Structural, vibrational and thermodynamic properties of (NH₄)₂SO₄ and NH₄NO₃: Ab initio study

S. Bourahla^[1], S. Kouadri Moustefai^[2],

¹Laboratory for Theoretical Physics and Materials Physics, Faculty of Technology, Hassiba Benbouali University of Chlef, Hai Essalem, Chlef, Algeria.
²Laboratory of Water and Environment, Faculty of Technology, Hassiba Benbouali University of Chlef, Hai Essalem, Chlef, Algeria.
bourahlasaida2001@yahoo.fr

Abstract. Structural, vibrational and thermodynamic properties of inorganic aerosols, including ammonium sulfate $(NH_4)_2SO_4$ and ammonium nitrate NH_4NO_3 have been investigated at the periodic ab initio quantum mechanical level with the CRYSTAL code, which is based on Gaussian basis sets. Local density (LDA), gradient-corrected (PW91), and hybrid (B3LYP) density functionals have been used and the results are compared with experiment. All three functionals reproduce the equilibrium geometry of these crystals to a high level of accuracy. The calculations of frequencies and thermodynamic properties gave a mean absolute deviation from experiment of few percent for B3LYP, clearly showing that this functional performs extremely well in this case.

Keywords: Ab initio, Ammonium sulfate, Ammonium nitrate, Structural, Vibrational modes, Thermodynamic properties.

2